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Remarkable aromatic substitution by a 1,5-diradical
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Abstract—Generation of 2,6-dioxa-3-phenylcyclohexylidene in benzene leads to 2,4-diphenyl-1,3-dioxane, the product of apparent
insertion into a CH bond of benzene. However, that product arises from attack of a diradical intermediate on benzene. © 2002

Elsevier Science Ltd. All rights reserved.

Thermolysis of oxadiazoline 1' in benzene at 110°C
afforded 2,4-diphenyl-1,3-dioxane (11), the product of
apparent insertion of carbene 2 into a CH bond of
benzene, in about 12% yield.? The sequence of Scheme
1 was indicated by the fact that carbene 2 could be
trapped in high yield with fert-butyl alcohol present in
the solvent.> Compound 11 was not detectable when
tert-butyl alcohol was present but it was obtained,
together with phenylcyclopropane (5, ca. 20%) and
a-phenyl-y-butyrolactone (7, ca. 20%), in the absence of
tert-butyl alcohol. Compound 5 is derived from the
diradical intermediates 3 and 6, through a decarboxyla-
tion/coupling sequence, while 7 is a product of

intramolecular coupling of 6, Scheme 1. A control
experiment with a similar carbene (13) that cannot
fragment readily was used to distinguish between a
carbenic and a radical reaction with benzene. 4,4-
Dimethyl-2,6-dioxacyclohexylidene (13), generated at
110°C in benzene by thermolysis of oxadiazoline 12,' did
not lead to 14 but formed dimer 15,* Scheme 2. Analysis
by GC, with authentic 14° for comparison, revealed not
a trace of 14. That result appears to rule out insertion
of carbene 2 into a CH bond of benzene as the source
of 11, because 13 should mimic the insertion tendencies
of 2. Insertion of a dialkoxycarbene into a CH bond of
benzene is unprecedented, in any case.®
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Homolytic fragmentation of cyclic oxycarbenes to
diradicals’ and of acyclic oxycarbenes®!° to an alkoxy-
carbonyl radical and another radical, both in the gas
phase and in solution, is known experimentally and it
has been studied by computation for model systems.?"-
25 Aromatic substitution by alkoxycarbonyl radicals is
also known.?® Thus, methoxycarbonyl radicals, gener-
ated in benzene by thermolysis of methyl azodicarboxy-
late at 130°C, gave methyl benzoate in 13% yield.*’
That reaction might be considered to be a poor model
for the reaction of 3 with benzene, because diradicals 3
and 6 have not only the additional option of decar-
boxylation but also that of cyclization to lactone 7.
Could attack on benzene be fast enough to compete?

The mechanism postulated in Scheme 1 was supported
by means of computation. Conformer 3 cannot cyclize
to the lactone 7 except by converting first to conformer
6. That process is known to have a significant barrier,
as shown by previous workers who modeled a similar
isomerization of the hydroxycarbonyl radical.?® With a
combination of SCF results for the rotational barrier
and CI calculations for the stable conformations and
the in-plane inversions, the authors®® estimated that the
transition state for rotation lay ~6.7 kcal mol™' above
the cis-HOCO radical and ~23.9 kcal mol™! below the
energy of the most facile in-plane inversion pathway. In
order to obtain a better estimate for the O—C=0O rota-
tional barrier in 3, the methoxycarbonyl radical was
used to model the rotational TS with the Gaussian 98,
Revision A.7, system of programs.? Electron correla-
tion was included with the B3LYP density functional
hybrid method and the Moller-Plesset method with
correlation energy truncated at the second order (MP2).
Zero point energies were corrected using a scaling
factor of 0.98 and 0.97 for the B3LYP and MP?2 results
respectively.’® Rotation is predicted to involve a barrier
of 8.0 and 8.9 kcal mol™! from the cis-MeOCO radical,
at the B3LYP/6-31+G* and MP2(FC)/6-31+G* levels,
respectively, while the trans-MeOCO radical lies 0.5
and 0.1 kcal mol™! higher in energy than the cis con-
former. Thus, isomerization of conformer 3 to con-
former 6, a necessary first step for cyclization, must be
relatively slow.

Rotations about the other single bonds*!' of 3 have
barriers smaller than 4 kcal mol™' and therefore 3
cannot retain its sickle shape long enough for rotation

of the CO group. When that group eventually does
rotate, those same single bonds must rotate in order to
return to a sickle-shaped 6 that, if in the singlet state,
can cyclize to lactone 7. The net effect of those entropic
features is that cyclization to 7 can be expected to be
slower than coupling of the 1,5-diyl would be, if it were
born in the conformation 6.>* Thus, the diradical is
probably long-lived enough to attack benzene in com-
petition with decarboxylation to 4 and cyclization to 7.

We were unable to find a rate constant for addition of
an alkoxycarbonyl radical to benzene, but our product
distribution enabled us to estimate that value as fol-
lows. From that distribution, one can conclude that
decarboxylation and coupling are about twice as fast as
attack on benzene. The rate constant for H-abstraction
(kgy) from HSnBu, by alkoxycarbonyl radicals at 110°C
was estimated to be 1.8x10° M~! s7! from the Arrhenius
equation of Newcomb et al.>* That number, together
with the product ratio (RH:ROCHO=38:25) from
reaction of ROCO with HSnBu,,*> was then used to
estimate the rate constant for decarboxylation of pri-
mary alkoxycarbonyls at 110°C, k(CO,)=6.8x10* s71.
Decarboxylation (of 3 and 6) and coupling of 6 are
about twice as fast as attack on benzene, permitting the
conclusion that the calculated kcos ~2 Kpenzene [bED-
zene]. The concentration of benzene is about 10 M, and
thus the rate constant for attack of 3 on benzene should
have a value of roughly 3.4x10° or <10* M~ s7! at
110°C.

The literature is sparse with respect to substitution on
benzene?® by alkoxycarbonyl radicals, implying that the
substitution is too slow to be generally useful. Possibly
the reaction is slow overall because addition is
reversible®® and reversal competes effectively with the
bimolecular H-transfer step leading to substitution
product. In the case of 3 and benzene, the initial adduct
(9) has an intramolecular follow-up step to compete
with intramolecular reversal of addition and that fea-
ture could make the difference that effectively enhances
the rate of aromatic substitution by 3. We suggest that
non-sickle conformations of diradicals 3 and 6 are
largely responsible for 11 and for some of the 5,
because cyclization of the singlet via conformation 6 is
expected to occur with only a small barrier.*

The final steps of Scheme 1, from 9 to 11, are reason-
able. 6-Endo cyclization to oxygen of a carbonyl group
is known?” as are other 6-endo cyclizations of radicals.®
Neither the 6-endo nor the corresponding 5-exo cycliza-
tions require rotation about the O—CO bond. More-
over, 5-exo cyclization of 9, even if it were faster, is
expected to be reversible.

6-Endo cyclization of 9 would generate diyl 10, ana-
logues of which were shown by Baldwin and Shukla to
undergo the type of H-transfer that would convert 10
to 11.%° Thus, we conclude that the reaction that gener-
ates 11 from thermolysis of 1 in benzene is a diradical
process rather than insertion of a carbene.
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